d Pointers in C

/

S ———

Introduction

Be able to use arrays, pointers, and strings in C
programs

Be able to explain the representation of these data
types at the machine level, including their similarities
and differences

-

Arrays in C

All elements of same type — homogenous
A Unlike Java, array size in declaration

— k’l
int array([10]; Compare: C: int array[10];
int b; Java: int[] array = new int[10];

— First element (index 0)
/ : .
array|[0] = 3; | — Last element (index size - 1)
/

array|[9]

~

4 .
array/10 =70
6

4

array\-1]

e

=

No bounds checking!
Allowed — usually causes no error
array[10] may overwrite b

Argigaghe RERIMEREIO Mytes

. An array of m data values is a sequence of mxs bytes

e Indexing: ot" value at byte sxo, 1%t value at byte sxi, ...

* mand s are not part of representation
e Unlike in some other languages
e s known by compiler — usually irrelevant to programmer
e m often known by compiler - if not, must be saved by programmer

0x1008

int a[3];

0x1004

0x1000

Array Re crﬂgrserfﬂ’gg:\tlon

char
int

i;

0x1014

0x1010

0x100C
0x1008
0x1004
0x1000

Could be optimized by
making these adjacent,
and reducing padding

(by default, not)

Array aligned by
size of elements

//

Array Sizes

int array[10];

©What is 4
returns the size of

an object in bytes sizeof (array[3])?

40

sizeof (array)?

Multi-Dimensionalk

int matrix[2][3];

matrix[1l][0] = 17;

Recall: no bounds checking

What happens when you write:

matrix[0] [3] = 42;

0x1010
0x100C
0x1008
0x1004

0x1000

“Row Major”
Organization

/

—_——

>

Variable-Length Arrays

function(int n)

{

int array[n];

New C99 feature: Variable-length arrays
defined within functions

Global arrays must still have fixed (constant) length

S ———

>

Memory Addresses

Storage cells are typically viewed as being byte-sized
e Usually the smallest addressable unit of memory

« Few machines can directly address bits individually

e Such addresses are sometimes called byte-addresses

Memory is often accessed as words

e Usually a word is the largest unit of memory access by a
single machine instruction
« CLEAR’s word size is 8 bytes (= sizeof (1long))

* A word-address is simply the byte-address of the word’s
first byte

Pointers

Special case of bounded-size natural numbers
¢ Maximum memory limited by processor word-size
e 232 bytes = 4GB, 2% bytes = 16 exabytes

A pointer is just another kind of value

e Abasictypein C |int *ptr;

The variable “ptr” is a pointer to an “int”.

10

—

=

/

Pointer Operations in C

Creation

& variable Returns variable’s memory address
Dereference

* pointer Returns contents stored at address
Indirect assignment

* pointer = val Stores value at address

Of course, still have...

Assignment
pointer = ptr Stores pointer in another variable

11

R T o A S
ot pEr 0x1014
int *ptr2;

0x1010
il = 1; 0x100C
Lzl 0x1008
ptrl = &il,’ 0x1004
ptr2 = ptrl; 0x1000
*ptrl = 3;
i2 = *ptr2;

/

Using:Pointers{eont jo =t

int *int ptrl = &intl; /* get addresses of data */
int *int ptr2 = &int2;

*int_ptrl = int_ptr2;

int2; \

*int_ptrl

What happens?

Type check warning: int ptr2 is not an int

intl becomes 8

13

:,¢¢/////

int_ptrl

int_ptr14

Using:Pointers{eont jo =t

int *int ptrl = &intl; /* get addresses of data */
int *int ptr2 = &int2;

*int_ptr2;

int_ptrZ ,\

What happens?

Type check warning: *int ptr2 is not an int *

Changes int ptrl — doesn’t change intl

14

P eéinke et h M@k - number

E.g., pointer + 1 adds1something to a pointer

char *p; int *p;
char a; int a;
char b; int b;
P = &a; p = &a;
p += 1; <7— In each, p now pointstob ——rp += 1;

(Assuming compiler doesn’t
reorder variables in memory)

Adds 1*sizeof(char) to Adds 1*sizeof(int) to
the memory address the memory address

Pointer arithmetic should be used cautiously

>

The Simplest Pointer in C

Special constant pointer NULL
 Points to no data
e Dereferencing illegal — causes segmentation fault

e To define, include <stdlib.h>or<stdio.h>

16

e — :;§7¢,/////

>

Generic Pointers

type cast: tells the compiler to
voidia: a *pomter to dnythmg: ange” an object’s type (for type

int i; checking purposes — does not modify
char c; / the object in any way)

p = &i;
p = &c; Dangerous! Sometimes necessary...
putchar (X (char *)p) ;

\/

Lose all information about what type of thing is
pointed to
e Reduces effectiveness of compiler’s type-checking

e (Can'’t use pointer arithmetic

17

// |

W i

{

*
"
I

void
f (void)

int a
int b

set x and y(&a, &b) ;

int *y)

= 1001;

1002;

=reins
=

Pass-by-Reference

set x and y(int *x,

18

e
, " Passing arrays:
Arrays and Pointers g
Array ~ pointer to the initial (oth) array : Must explicitly
T Really int *array pass t/he S
int /
] i] foo(int array|[],
S =) unsigned int size)
{
An array is passed to a function as a .. array[size - 1] .
pointer }
e The array size is lost!
int
main (void)
Usually bad style to interchange arrays (
and pointers int a[10], b[5];
e Avoid pointer arithmetic! .. foo(a, 10).. foo(b, 5) ..
}

19

/

A¥rays and Pointers

foo (int arrayl],
unsigned int size)

e What does this print? 8

printf (“$d\n”, sizeof (array)); * | :
... because array is really

} :
a pointer

int
main (void)
{

int a[10], b[5];
. foo(a, 10).. foo(b, 5) .. | What does this print? 40

printf (“%d\n”, sizeof(a)); «— |

//

Arrays and Pointers

b o f iRt SiK

array[i]

}

int *p;

int array[10]; int array[10];

for (i = 0; 1 < 10; i++) for p < &array[10]
{ {

= 2 s
cee J coe

}

These two blocks of code are functionally equivalent

21

// |

e T

Strings

* In C, strings are just an array of characters

e Terminated with ‘\o’ character

e Arra

YentQr bogaded-lengfly sErings 1 41 \n~

e Poin

&efortesstant strifgklCor ¥rkALWRN’ 1y

ength)

&

Pascal, Java, ...

C terminator: " \0’

22

>

SlicdrgJangh:

e — array or pointer
strlen (
{

Check for
terminator

array access int len

to pointer! \\
while 1=

len++; \\\
What is the size

of the array???

I
(@

return (len);

}
Provided by standard C library: #inciude <string.n>

23

/

PaintedoRomter (char **argv)

size of the argv array/vector
int B o
main (in cha
-

{ ——___ an array/yvector of
char *
} Recall when passing an

array, a pointer to the

} first element is passed
Suppose you run the program this way

UNIX% ./program hello 1 2 3

argc == 5 (five stringson the
command line)

24

char **argv

\\3//
—

2920 wo~ L Theseare strings!!
0x1018 Not integers!
0x1010 > 17 —

0x1008 —s “hello”

0x1000

“./program”

25

